Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust.

Identifieur interne : 000787 ( Main/Exploration ); précédent : 000786; suivant : 000788

Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust.

Auteurs : Wenxuan Liu [États-Unis] ; Yue Jin ; Matthew Rouse ; Bernd Friebe ; Bikram Gill ; Michael O. Pumphrey

Source :

RBID : pubmed:21347655

Descripteurs français

English descriptors

Abstract

The emergence of a new highly virulent race of stem rust (Puccinia graminis tritici), Ug99, rapid evolution of new Ug99 derivative races overcoming resistance of widely deployed genes, and spread towards important wheat growing areas now potentially threaten world food security. Exploiting novel genes effective against Ug99 from wild relatives of wheat is one of the most promising strategies for the protection of the wheat crop. A new source of resistance to Ug99 was identified in the short arm of the Aegilops searsii chromosome 3S(s) by screening wheat- Ae. searsii introgression libraries available as individual chromosome and chromosome arm additions to the wheat genome. For transferring this resistance gene into common wheat, we produced three double-monosomic chromosome populations (3A/3S(s), 3B/3S(s) and 3D/3S(s)) and then applied integrated stem rust screening, molecular maker analysis, and cytogenetic analysis to identify resistant wheat-Ae. searsii Robertsonian translocation. Three Robertsonian translocations (T3AL·3S(s)S, T3BL·3S(s)S and T3DL·3S(s)S) and one recombinant (T3DS-3S(s)S·3S(s)L) with stem rust resistance were identified and confirmed to be genetically compensating on the basis of genomic in situ hybridization, analysis of 3A, 3B, 3D and 3S(s)S-specific SSR/STS-PCR markers, and C-banding. In addition, nine SSR/STS-PCR markers of 3S(s)S-specific were developed for marker-assisted selection of the resistant gene. Efforts to reduce potential linkage drag associated with 3S(s)S of Ae. searsii are currently under way.

DOI: 10.1007/s00122-011-1553-4
PubMed: 21347655


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust.</title>
<author>
<name sortKey="Liu, Wenxuan" sort="Liu, Wenxuan" uniqKey="Liu W" first="Wenxuan" last="Liu">Wenxuan Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506-5502, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506-5502</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jin, Yue" sort="Jin, Yue" uniqKey="Jin Y" first="Yue" last="Jin">Yue Jin</name>
</author>
<author>
<name sortKey="Rouse, Matthew" sort="Rouse, Matthew" uniqKey="Rouse M" first="Matthew" last="Rouse">Matthew Rouse</name>
</author>
<author>
<name sortKey="Friebe, Bernd" sort="Friebe, Bernd" uniqKey="Friebe B" first="Bernd" last="Friebe">Bernd Friebe</name>
</author>
<author>
<name sortKey="Gill, Bikram" sort="Gill, Bikram" uniqKey="Gill B" first="Bikram" last="Gill">Bikram Gill</name>
</author>
<author>
<name sortKey="Pumphrey, Michael O" sort="Pumphrey, Michael O" uniqKey="Pumphrey M" first="Michael O" last="Pumphrey">Michael O. Pumphrey</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21347655</idno>
<idno type="pmid">21347655</idno>
<idno type="doi">10.1007/s00122-011-1553-4</idno>
<idno type="wicri:Area/Main/Corpus">000773</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000773</idno>
<idno type="wicri:Area/Main/Curation">000773</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000773</idno>
<idno type="wicri:Area/Main/Exploration">000773</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust.</title>
<author>
<name sortKey="Liu, Wenxuan" sort="Liu, Wenxuan" uniqKey="Liu W" first="Wenxuan" last="Liu">Wenxuan Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506-5502, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506-5502</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jin, Yue" sort="Jin, Yue" uniqKey="Jin Y" first="Yue" last="Jin">Yue Jin</name>
</author>
<author>
<name sortKey="Rouse, Matthew" sort="Rouse, Matthew" uniqKey="Rouse M" first="Matthew" last="Rouse">Matthew Rouse</name>
</author>
<author>
<name sortKey="Friebe, Bernd" sort="Friebe, Bernd" uniqKey="Friebe B" first="Bernd" last="Friebe">Bernd Friebe</name>
</author>
<author>
<name sortKey="Gill, Bikram" sort="Gill, Bikram" uniqKey="Gill B" first="Bikram" last="Gill">Bikram Gill</name>
</author>
<author>
<name sortKey="Pumphrey, Michael O" sort="Pumphrey, Michael O" uniqKey="Pumphrey M" first="Michael O" last="Pumphrey">Michael O. Pumphrey</name>
</author>
</analytic>
<series>
<title level="j">TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</title>
<idno type="eISSN">1432-2242</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (MeSH)</term>
<term>DNA Primers (genetics)</term>
<term>DNA, Recombinant (genetics)</term>
<term>Genetic Therapy (methods)</term>
<term>Immunity, Innate (genetics)</term>
<term>In Situ Hybridization (methods)</term>
<term>Microscopy, Fluorescence (MeSH)</term>
<term>Minisatellite Repeats (genetics)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Diseases (therapy)</term>
<term>Translocation, Genetic (genetics)</term>
<term>Triticum (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN recombiné (génétique)</term>
<term>Amorces ADN (génétique)</term>
<term>Basidiomycota (MeSH)</term>
<term>Hybridation in situ (méthodes)</term>
<term>Immunité innée (génétique)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Maladies des plantes (thérapie)</term>
<term>Microscopie de fluorescence (MeSH)</term>
<term>Répétitions minisatellites (génétique)</term>
<term>Thérapie génétique (méthodes)</term>
<term>Translocation génétique (génétique)</term>
<term>Triticum (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Primers</term>
<term>DNA, Recombinant</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Immunity, Innate</term>
<term>Minisatellite Repeats</term>
<term>Plant Diseases</term>
<term>Translocation, Genetic</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN recombiné</term>
<term>Amorces ADN</term>
<term>Immunité innée</term>
<term>Maladies des plantes</term>
<term>Répétitions minisatellites</term>
<term>Translocation génétique</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Genetic Therapy</term>
<term>In Situ Hybridization</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Hybridation in situ</term>
<term>Thérapie génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="thérapie" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Basidiomycota</term>
<term>Microscopy, Fluorescence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Basidiomycota</term>
<term>Microscopie de fluorescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The emergence of a new highly virulent race of stem rust (Puccinia graminis tritici), Ug99, rapid evolution of new Ug99 derivative races overcoming resistance of widely deployed genes, and spread towards important wheat growing areas now potentially threaten world food security. Exploiting novel genes effective against Ug99 from wild relatives of wheat is one of the most promising strategies for the protection of the wheat crop. A new source of resistance to Ug99 was identified in the short arm of the Aegilops searsii chromosome 3S(s) by screening wheat- Ae. searsii introgression libraries available as individual chromosome and chromosome arm additions to the wheat genome. For transferring this resistance gene into common wheat, we produced three double-monosomic chromosome populations (3A/3S(s), 3B/3S(s) and 3D/3S(s)) and then applied integrated stem rust screening, molecular maker analysis, and cytogenetic analysis to identify resistant wheat-Ae. searsii Robertsonian translocation. Three Robertsonian translocations (T3AL·3S(s)S, T3BL·3S(s)S and T3DL·3S(s)S) and one recombinant (T3DS-3S(s)S·3S(s)L) with stem rust resistance were identified and confirmed to be genetically compensating on the basis of genomic in situ hybridization, analysis of 3A, 3B, 3D and 3S(s)S-specific SSR/STS-PCR markers, and C-banding. In addition, nine SSR/STS-PCR markers of 3S(s)S-specific were developed for marker-assisted selection of the resistant gene. Efforts to reduce potential linkage drag associated with 3S(s)S of Ae. searsii are currently under way.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21347655</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>08</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2242</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>122</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2011</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</Title>
<ISOAbbreviation>Theor Appl Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust.</ArticleTitle>
<Pagination>
<MedlinePgn>1537-45</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00122-011-1553-4</ELocationID>
<Abstract>
<AbstractText>The emergence of a new highly virulent race of stem rust (Puccinia graminis tritici), Ug99, rapid evolution of new Ug99 derivative races overcoming resistance of widely deployed genes, and spread towards important wheat growing areas now potentially threaten world food security. Exploiting novel genes effective against Ug99 from wild relatives of wheat is one of the most promising strategies for the protection of the wheat crop. A new source of resistance to Ug99 was identified in the short arm of the Aegilops searsii chromosome 3S(s) by screening wheat- Ae. searsii introgression libraries available as individual chromosome and chromosome arm additions to the wheat genome. For transferring this resistance gene into common wheat, we produced three double-monosomic chromosome populations (3A/3S(s), 3B/3S(s) and 3D/3S(s)) and then applied integrated stem rust screening, molecular maker analysis, and cytogenetic analysis to identify resistant wheat-Ae. searsii Robertsonian translocation. Three Robertsonian translocations (T3AL·3S(s)S, T3BL·3S(s)S and T3DL·3S(s)S) and one recombinant (T3DS-3S(s)S·3S(s)L) with stem rust resistance were identified and confirmed to be genetically compensating on the basis of genomic in situ hybridization, analysis of 3A, 3B, 3D and 3S(s)S-specific SSR/STS-PCR markers, and C-banding. In addition, nine SSR/STS-PCR markers of 3S(s)S-specific were developed for marker-assisted selection of the resistant gene. Efforts to reduce potential linkage drag associated with 3S(s)S of Ae. searsii are currently under way.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Wenxuan</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506-5502, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Yue</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rouse</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Friebe</LastName>
<ForeName>Bernd</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gill</LastName>
<ForeName>Bikram</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pumphrey</LastName>
<ForeName>Michael O</ForeName>
<Initials>MO</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>02</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Theor Appl Genet</MedlineTA>
<NlmUniqueID>0145600</NlmUniqueID>
<ISSNLinking>0040-5752</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004274">DNA, Recombinant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="Y">Basidiomycota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004274" MajorTopicYN="N">DNA, Recombinant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015316" MajorTopicYN="N">Genetic Therapy</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017403" MajorTopicYN="N">In Situ Hybridization</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018598" MajorTopicYN="N">Minisatellite Repeats</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000628" MajorTopicYN="Y">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014178" MajorTopicYN="N">Translocation, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>12</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>2</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21347655</ArticleId>
<ArticleId IdType="doi">10.1007/s00122-011-1553-4</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Funct Integr Genomics. 2004 Mar;4(1):12-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Mar 30;315(5820):1786-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17395806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2008 Nov;117(7):1155-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18712343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Aug;113(4):631-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16816964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2002;10(5):349-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12296517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 1952;4(6):535-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14945063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytogenet Genome Res. 2005;109(1-3):293-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15753589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1995 Jul;91(2):248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24169771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 2001 Sep;110(5):335-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11685533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2008;16(8):1097-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18855109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Oct;109(6):1105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15490101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1983 Feb;64(3):239-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24264951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2007;15(1):3-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17295123</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Kansas</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Friebe, Bernd" sort="Friebe, Bernd" uniqKey="Friebe B" first="Bernd" last="Friebe">Bernd Friebe</name>
<name sortKey="Gill, Bikram" sort="Gill, Bikram" uniqKey="Gill B" first="Bikram" last="Gill">Bikram Gill</name>
<name sortKey="Jin, Yue" sort="Jin, Yue" uniqKey="Jin Y" first="Yue" last="Jin">Yue Jin</name>
<name sortKey="Pumphrey, Michael O" sort="Pumphrey, Michael O" uniqKey="Pumphrey M" first="Michael O" last="Pumphrey">Michael O. Pumphrey</name>
<name sortKey="Rouse, Matthew" sort="Rouse, Matthew" uniqKey="Rouse M" first="Matthew" last="Rouse">Matthew Rouse</name>
</noCountry>
<country name="États-Unis">
<region name="Kansas">
<name sortKey="Liu, Wenxuan" sort="Liu, Wenxuan" uniqKey="Liu W" first="Wenxuan" last="Liu">Wenxuan Liu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000787 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000787 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21347655
   |texte=   Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21347655" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020